Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.182
Filtrar
1.
Mikrochim Acta ; 191(5): 269, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630309

RESUMO

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Assuntos
Luminescência , Impressão Molecular , Piretrinas , Luminol , Polímeros Molecularmente Impressos
2.
Opt Express ; 32(6): 10033-10045, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571224

RESUMO

Fiber optic interferometry combined with recognizing elements has attracted intensive attention for the development of different biosensors due to its superior characteristic features. However, the immobilization of sensing elements alone is not capable of low-concentration detection due to weak interaction with the evanescent field of the sensing transducer. The utilization of different 2D materials with high absorption potential and specific surface area can enhance the intensity of the evanescent field and hence the sensitivity of the sensor. Here, a biosensor has been fabricated using an inline hetero fiber structure of photonic crystal fiber (PCF) and single-mode fiber (SMF) functionalized with a nanocomposite of molybodenum di-sulfide (MoS2) and molecular imprinting polymer (MIP) to detect trace levels of bovine serum albumin (BSA). The sensor showed a wide dynamic detection range with a high sensitivity of 2.34 × 107 pm/µg L-1. It shows working potential over a wide pH range with a subfemtomolar detection limit. The compact size, easy fabrication, stable structure, long detection range, and high sensitivity of this sensor would open a new path for the development of different biosensors for online and remote sensing applications.


Assuntos
Impressão Molecular , Nanocompostos , Polímeros/química , Molibdênio , Tecnologia de Fibra Óptica
3.
Mikrochim Acta ; 191(5): 238, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570401

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful method for detecting breast cancer-specific biomarkers due to its extraordinary enhancement effects obtained by localized surface plasmon resonance (LSPR) in metallic nanostructures at hotspots. In this research, gold nanostars (AuNSs) were used as SERS probes to detect a cancer biomarker at very low concentrations. To this end, we combined molecularly imprinted polymers (MIPs) as a detection layer with SERS for the detection of the biomarker CA 15-3 in point-of-care (PoC) analysis. This required two main steps: (i) the deposition of MIPs on a gold electrode, followed by a second step (ii) antibody binding with AuNSs containing a suitable Raman reporter to enhance Raman signaling (SERS). The MPan sensor was prepared by electropolymerization of the monomer aniline in the presence of CA 15-3. The template molecule was then extracted from the polymer using sodium dodecyl sulfate (SDS). In parallel, a control material was prepared in the absence of the protein (NPan). Surface modification for the control was performed using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the sensor was evaluated using the SERS technique, in which the MPan sensor is first incubated with the protein and then exposed to the SERS probe. Under optimized conditions, the device showed a linear response to CA 15-3 concentrations from 0.016 to 248.51 U mL-1 in a PBS buffer at pH 7.4 in 1000-fold diluted serum. Overall, this approach demonstrates the potential of SERS as an optical reader and opens a new avenue for biosensing applications.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Neoplasias , Biomarcadores Tumorais , Impressão Molecular/métodos , Técnicas Biossensoriais/métodos , Anticorpos , Ouro/química
4.
Mikrochim Acta ; 191(4): 227, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558113

RESUMO

Chitosan, an abundant natural polysaccharide, was conjugated with carbon dots (CDs) and self-polymerized with chloramphenicol (CAP) templates to synthesize CD-incorporated and molecularly CAP-imprinted polychitosan (CD-MIC). The CD-MIC was used for fluorescent sensing, dispersive sorption, and dosage release of CAP at different pH levels. The sphere of action mechanism, approved by emission and excitation fluorescence, UV-Vis absorption, and fluorescence lifetime measurements, regulated the fluorescence static quenching. By the Perrin model, the quenching extent was linearly correlated to CAP within 0.17 - 33.2 µM (LOD = 37 nM) at pH 7.0. With an imprinting factor of 3.1, the CD-MIC was more selective for CAP than CD, although it was less sensitive to CAP. The recoveries of 5.0 µM CAP from milk matrix were 95% (RSD = 2.3%) for CD-MIC probes and 62% (RSD = 4.5%) for CD. The Langmuir and pseudo-second-order models preferably described the isothermal and kinetic sorptions of CAP into the imprinted cavities in CD-MICs, respectively. The Weber - Morris kinetic model showed three stages involved in intraparticle diffusion, which was pH-dependent and gradually arduous at the later stage, and showed external diffusion partly engaged in the diffusion mechanism. The 20 - 70% of CAP formulated in CAP-embedded CD-MICs were released in 8 - 48 h. The release percentage was lower at pH 7.0 than at pH 5.0 and 9.0, but the equilibrium time was shorter. At pH 7.0, the release percentage reached 45% at 10 min and slowly increased to 51% at 24 h.


Assuntos
Impressão Molecular , Pontos Quânticos , Carbono , Cloranfenicol , Portadores de Fármacos , Corantes
5.
Chemosphere ; 355: 141680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479683

RESUMO

In this study, a novel Fe3O4-based biochar coupled surface-imprinted polymer was constructed via simple hydrothermal route for salicylic acid recognition and degradation in advanced oxidation processes. The material exhibited excellent adsorption capability, up to 118.23 mg g-1, and efficient degradation performance, 87.44% removal rate within 240 min, based on integrating the advantages of both huge specific surface area as well as abundant functional groups from biochars and specific recognition sites from imprinted cavities. Moreover, high selectivity coefficient (11.67) showed stable recognition in single and binary systems. SO4•- and •OH were confirmed as reactive oxygen species in catalytic reaction according to quenching experiments and EPR analysis. The degradation mechanism and pathway were unraveled by DFT calculations and LC-MS. Furthermore, the results of toxicity evaluation, stability and reusability demonstrated application potential in the field of water environment restoration. This study confirmed that molecular imprinting provided a promising solution to targeted removal of emerging environmental pollutants by degrading after the enrichment of pollutants to the composites surface.


Assuntos
Carvão Vegetal , Impressão Molecular , Águas Residuárias , Polímeros Molecularmente Impressos , Ácido Salicílico , Polímeros , Impressão Molecular/métodos , Adsorção
6.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553121

RESUMO

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Peptídeos , Substâncias Macromoleculares , Adsorção , Impressão Molecular/métodos
7.
J Chromatogr A ; 1720: 464809, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490141

RESUMO

An ultrafast, efficient, and eco-friendly method combining magnetic solid phase extraction and capillary electrophoresis with diode array detection have been developed to determine ractopamine residues in food samples. A restricted access material based on magnetic and mesoporous molecularly imprinted polymer has been properly synthesized and characterized, demonstrating excellent selectivity and high adsorbent capacity. Short-end injection capillary electrophoresis method was optimized: 75 mM triethylamine pH 7 as BGE, -20 kV, 50 mbar by hydrodynamic injection during 8 s, and capillary temperature at 25 °C; reaching ultrafast ractopamine analysis (∼0.6 min) with good peak asymmetry, and free from interfering and/or baseline noise. After sample preparation optimization, the conditions were: 1000 µL of sample at pH 6, 20 mg of adsorbent, stirring time of 120 s, 250 µL of ultrapure water as washing solvent, 1000 µL of methanol: acetic acid (7: 3, v/v) as eluent, and the adsorbent can be reused four times. In these conditions, the analytical method showed recoveries around to 100 %, linearity ranged from 9.74 to 974.0 µg kg-1, correlation coefficient (r) ≥ 0,99 in addition to adequate precision, accuracy, and robustness. After proper validation, the method was successfully applied in the analysis ractopamine residues in bovine milk and bovine and porcine muscle.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Fenetilaminas , Animais , Suínos , Extração em Fase Sólida/métodos , Eletroforese Capilar/métodos , Fenômenos Magnéticos , Impressão Molecular/métodos , Cromatografia Líquida de Alta Pressão/métodos
8.
J Chromatogr A ; 1720: 464783, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38492290

RESUMO

This study proposes a new alternative for template removal from molecularly imprinted polymers by heat activated persulfate. It is known that trace amounts of template molecule remains in the polymer network after extraction by current methodologies leading to bleeding and incomplete removal of template which could compromise final determination of target analytes especially in trace analysis. A previously developed molecularly imprinted polymer specially designed for Coenzyme Q10 (CoQ10) extraction was employed as a model to test this template elimination approach. This polymer is based on methacrylic acid and ethylene glycol dimethylacrylate as monomers and Coenzyme Q0 as template. This coenzyme has the same quinone group as the CoQ10. Selectivity was analyzed comparing the recovery of CoQ10 and ubichromenol, a CoQ10 related substance. Chemical degradation using heat-activated persulfate allows the elimination of the template molecule with a high level of efficiency, being a simple and ecological methodology, yielding a polymer that exhibits comparable selectivity and imprinting effect with respect to traditional extraction methods.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Ubiquinona , Temperatura Alta , Polímeros/química , Impressão Molecular/métodos
9.
Biosens Bioelectron ; 254: 116225, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38502997

RESUMO

Conventional molecularly imprinted polymers (MIPs) perform their functions principally depended on their three dimensional (3D) imprinted cavities (recognition sites) of templates. Here, retaining the function of recognition sites resulted from the imprinting of template molecules, the role of functional monomers is explored and expanded. Briefly, a class of dual-functional renin imprinted poly(methyldopa) (RMIP) is prepared, consisting of a drug-type function monomer (methyldopa, clinical high blood pressure drug) and a corresponding disease biomarker (renin, biomarker for high blood pressure disease). To boost target-to-receptor binding ratio and sensitivity, the microstructure of recognition sites is beforehand calculated and designed by Density Functional Theory calculations, and the whole interfacial structure, property and thickness of RMIP film is regulated by adjusting the polymerization techniques. The dual-functional applications of RMIP for biomarker detection and disease therapy in vivo is explored. Such RMIP-based biosensors achieves highly sensitive biomarker detection, where the LODs reaches down to 1.31 × 10-6 and 1.26 × 10-6 ng mL-1 for electrochemical and chemical polymers, respectively, and the application for disease therapy in vivo has been verified where displays the obviously decreased blood pressure values of mice. No acute and long-term toxicity is found from the pathological slices, declaring the promising clinical application potential of such engineered RMIP nanostructure.


Assuntos
Técnicas Biossensoriais , Hipertensão , Impressão Molecular , Animais , Camundongos , Impressão Molecular/métodos , Metildopa , Renina , Biomarcadores , Poli A
10.
Biosens Bioelectron ; 255: 116246, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537430

RESUMO

3-nitrotyrosine (3-NT) is a biomarker closely associated with the early diagnosis of oxidative stress-related disorders. The development of an accurate, cost-effective, point-of-care 3-NT sensor holds significant importance for self-monitoring and clinical treatment. In this study, a selective, sensitive, and portable molecularly imprinted electrochemical sensor was developed. ZIF-67 with strong adsorption capacity was facilely modified on an electrochemically active laser-induced graphene (LIG) substrate (formed ZIF-67/LIG). Subsequently, biocompatible dopamine was chosen as the functional monomer, and interference-free ʟ-tyrosine was used as the dummy template to create molecularly imprinted polydopamine (MIPDA) on the ZIF-67/LIG, endowing the sensor with selectivity. The morphologies, electrochemical properties, and detection performance of the sensor were comprehensively investigated using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. To achieve the best performance, several parameters were optimized, including the number of polymerization cycles (15), elution time (60 min), incubation time (7 min), and pH of the buffer solution (6). The turnaround time for this sensor is 10 min. Benefiting from the alliance of MIPDA, ZIF-67, and LIG, the sensor exhibited excellent sensitivity with a detection limit of 6.71 nM, and distinguished selectivity against 11 interfering substances. To enable convenient clinical diagnosis, a customized electrochemical microsensor with MIPDA/ZIF-67/LIG was designed, showcasing excellent reliability and convenience in detecting biological samples without pretreatment. The proposed microsensor will not only facilitate clinical diagnosis and improve patient care, but also provide inspiration for the development of other portable and accurate electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Indóis , Impressão Molecular , Polímeros , Tirosina/análogos & derivados , Humanos , Grafite/química , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Eletrodos
11.
Biosensors (Basel) ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534228

RESUMO

Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Grafite , Impressão Molecular , Nanocompostos , Fenilenodiaminas , Polímeros , Dibutilftalato , Polímeros Molecularmente Impressos , Técnicas Eletroquímicas/métodos , Grafite/química , Polilisina , Porosidade , Nanocompostos/química , Impressão Molecular/métodos , Limite de Detecção , Eletrodos
12.
Biosensors (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534258

RESUMO

Two fluorescent molecularly imprinted polymers (MIPs) were developed for pepsin enzyme utilising fluorescein and rhodamine b. The main difference between both dyes is the presence of two (diethylamino) groups in the structure of rhodamine b. Consequently, we wanted to investigate the effect of these functional groups on the selectivity and sensitivity of the resulting MIPs. Therefore, two silica-based MIPs for pepsin enzyme were developed using 3-aminopropyltriethoxysilane as a functional monomer and tetraethyl orthosilicate as a crosslinker to achieve a one-pot synthesis. Results of our study revealed that rhodamine b dyed MIPs (RMIPs) showed stronger binding, indicated by a higher binding capacity value of 256 mg g-1 compared to 217 mg g-1 for fluorescein dyed MIPs (FMIPs). Moreover, RMIPs showed superior sensitivity in the detection and quantitation of pepsin with a linear range from 0.28 to 42.85 µmol L-1 and a limit of detection (LOD) as low as 0.11 µmol L-1. In contrast, FMIPs covered a narrower range from 0.71 to 35.71 µmol L-1, and the LOD value reached 0.34 µmol L-1, which is three times less sensitive than RMIPs. Finally, the developed FMIPs and RMIPs were applied to a separation-free quantification system for pepsin in saliva samples without interference from any cross-reactors.


Assuntos
Impressão Molecular , Pepsina A , Limite de Detecção , Fluoresceína , Corantes , Impressão Molecular/métodos
13.
Anal Bioanal Chem ; 416(10): 2479-2492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462592

RESUMO

Bisphenol A (BPA), known for its endocrine-disrupting properties and potential to leach into food products, has led to significant food safety concerns. Therefore, the development of sensitive and selective BPA rapid detection methods is crucial. In this study, molecularly imprinted solid-phase extraction coupled to a colorimetric method was adopted for the smartphone-based determination of BPA. The molecularly imprinted polymer (MIP) was prepared via photopolymerization and used as a selective adsorbent material for SPE columns. The solid-phase extraction (SPE) columns with multiple cycles significantly reduced the extraction time to only 30 min. The developed method demonstrates useful sensitivity for BPA (LOD = 30 ppb). Furthermore, BPA migration from plastic packaging was evaluated under different storage conditions, revealing that microwave treatment for 5 min led to BPA release from polycarbonate packaging in juice and basic solutions. The MIP selective extraction/clean-up and smartphone-based optical sensor were successfully applied to BPA standard solutions and complex food samples (e.g., juice and tap water), resulting in reproducible and selective BPA determination (RSD ≤ 6%, n = 3). This rapid and cost-effective method of producing MIPs for BPA offers a promising solution for fast and low-cost sensing for on-site fresh food analysis.


Assuntos
Impressão Molecular , Fenóis , Impressão Molecular/métodos , Smartphone , Extração em Fase Sólida/métodos , Água , Compostos Benzidrílicos/análise , Polímeros Molecularmente Impressos
14.
Bioanalysis ; 16(6): 331-345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426317

RESUMO

Aim: Investigating molecularly imprinted polymers (MIPs) in electrochemical biosensors for thrombin detection, an essential protein biomarker. Comparing different monomers to showcase distinct sensitivity, specificity and stability advantages. Materials & methods: Dopamine, thionine and ethanolamine serve as monomers for MIP synthesis. Electrochemical methods and atomic force microscopy characterize sensor surfaces. Performance is evaluated, emphasizing monomer-specific electrochemical responses. Results: Monomer-specific electrochemical responses highlight dopamine's superior signal change and stability over 30 days. Notably, a low 5 pg/ml limit of detection, a broad linear range (5-200 pg/ml) and enhanced selectivity against interferents are observed. Conclusion: Dopamine-based MIPs show promise for high-performance electrochemical thrombin biosensors, suggesting significant applications in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Dopamina , Trombina , Polímeros/química , Impressão Molecular/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos
15.
J Hazard Mater ; 469: 133969, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460257

RESUMO

Marine algal toxin contamination is a major threat to human health. Thus, it is crucial to develop rapid and on-site techniques for detecting algal toxins. In this work, we developed colorimetric cloth and paper hybrid microfluidic devices (µCPADs) for rapid detection of gonyautoxin (GTX1/4) combined with molecularly imprinted polymers. In addition, the metal-organic frameworks (MOFs) composites were applied for this approach by their unique features. Guanosine serves as a dummy template for surface imprinting and has certain structural advantages in recognizing gonyautoxin. MOF@MIPs composites were able to perform a catalytic color reaction using hydrogen peroxide-tetramethylbenzidine for the detection of GTX1/4. The cloth-based sensing substrates were assembled on origami µPADs to form user-friendly, miniaturized colorimetric µCPADs. Combined with a smartphone, the proposed colorimetric µCPADs successfully achieved a low limit of detection of 0.65 µg/L within the range of 1-200 µg/L for rapid visual detection of GTX1/4. Moreover, the GTX1/4 of real shellfish and seawater samples were satisfactorily detected to indicate the application prospect of the µCPADs. The proposed method shows good potential in the low-cost, stable establishment of assays for the rapid detection of environmental biotoxins.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Saxitoxina/análogos & derivados , Humanos , Estruturas Metalorgânicas/química , Impressão Molecular/métodos , Limite de Detecção
16.
Lab Chip ; 24(8): 2262-2271, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501606

RESUMO

This article introduces distance-based paper analytical devices (dPADs) integrated with molecularly imprinted polymers (MIPs) and carbon dots (CDs) for simultaneous quantification of cytokine biomarkers, namely C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in human biological samples for diagnosis of cytokine syndrome. Using fluorescent CDs and MIP technology, the dPAD exhibits high selectivity and sensitivity. Detection is based on fluorescence quenching of CDs achieved through the interaction of the target analytes with the MIP layer on the paper substrate. Quantitative analysis is easily accomplished by measuring the distance length of quenched fluorescence with a traditional ruler and naked eye readout enabling rapid diagnosis of cytokine syndrome and the underlying infection. Our sensor demonstrated linear ranges of 2.50-24.0 pg mL-1 (R2 = 0.9974), 0.25-3.20 pg mL-1 (R2 = 0.9985), and 1.50-16.0 pg mL-1 (R2 = 0.9966) with detection limits (LODs) of 2.50, 0.25, and 1.50 pg mL-1 for CRP, TNF-α, and IL-6, respectively. This sensor also demonstrated remarkable selectivity compared to a sensor employing a non-imprinted polymer (NIP), and precision with the highest relative standard deviation (RSD) of 5.14%. The sensor is more accessible compared to prior methods relying on expensive reagents and instruments and complex fabrication methods. Furthermore, the assay provided notable accuracy for monitoring these biomarkers in various human samples with recovery percentages ranging between 99.22% and 103.58%. By integrating microfluidic systems, nanosensing, and MIPs technology, our developed dPADs hold significant potential as a cost-effective and user-friendly analytical method for point-of-care diagnostics (POC) of cytokine-related disorders. This concept can be further extended to developing diagnostic devices for other biomarkers.


Assuntos
Impressão Molecular , Pontos Quânticos , Humanos , Polímeros Molecularmente Impressos , Carbono , Citocinas , Interleucina-6 , Fator de Necrose Tumoral alfa , Limite de Detecção , Impressão Molecular/métodos , Biomarcadores , Corantes Fluorescentes
17.
Talanta ; 273: 125874, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458084

RESUMO

2-Methyl-4-chlorophenoxyacetic acid (MCPA) is one of the most widely used herbicides, so adsorption and detection of MCPA in the environment is critical. Blue fluorescent carbon dot (CD) was synthesized from citric acid and urea, which could be quenched by MCPA. Herein, bifunctional molecularly imprinted polymer (CD@MIP) was prepared on monodisperse poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, and doped with CD. The enrichment ability of CD@MIP for MCPA and fluorescence detection performance were determined. The maximum adsorption amount of MCPA was 93.9 mg g-1 as determined by isothermal adsorption experiments and was in accordance with the Langmuir adsorption model. The results of the kinetic experiments showed that the adsorption equilibrium reached within 30 min, which possessed a relatively fast adsorption rate and was in accordance with the pseudo-second-order adsorption model. Both MIP without CD and non-imprinted polymers were also fabricated and tested as references. Fluorescence experiments showed good linearity of CD@MIP in the range of 0-80 µmol. The cabbage samples were analyzed by high performance liquid chromatography with a linear range of 0.02-15 µg mL-1, recoveries of 90.5%-98% and low relative standard deviations (RSD, n = 3) of 1.5%-5.9%. CD@MIP with excellent performance provides a feasible practical application in the detection and enrichment of MCPA.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Metacrilatos , Impressão Molecular , Polímeros Molecularmente Impressos , Carbono , Impressão Molecular/métodos , Verduras , Adsorção , Cromatografia Líquida de Alta Pressão
18.
Talanta ; 273: 125883, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521023

RESUMO

Quercetin (QUE) is a powerful antioxidant and one of the common phenolic compounds found in plants, vegetables, and fruits, which has shown many pharmacological activities. The complex nature of the matrix in which QUE is found and its importance and potential uses in diverse applications force the researchers to develop selective and sensitive sensors. In the present work, a novel molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the selective and sensitive determination of the QUE in plant extracts and food supplements. Tryptophan methacrylate (TrpMA) was chosen as the functional monomer, whereas the photopolymerization (PP) method was applied using a glassy carbon electrode (GCE). Electrochemical and morphological characterizations of the developed sensor (TrpMA@QUE/MIP-GCE) were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The linear range of the developed sensor was determined to be in the range of 1.0-25 pM, while the limit of detection (LOD) was calculated to be 0.235 pM. In conclusion, The TrpMA@QUE/MIP-GCE sensor might be classified as a promising platform for selective and sensitive determination of QUE not only in plant extracts but also in commercial food supplements because of its reliability, reproducibility, repeatability, stability, and fast response time.


Assuntos
Fragaria , Impressão Molecular , Rubus , Polímeros/química , Quercetina , Reprodutibilidade dos Testes , Metanol , Técnicas Eletroquímicas/métodos , Carbono/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos , Extratos Vegetais
19.
Food Chem ; 446: 138839, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428083

RESUMO

α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Polímeros , Inocuidade dos Alimentos , Produtos Finais de Glicação Avançada
20.
Food Chem ; 447: 138998, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503068

RESUMO

As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 µg L-1 and the limit of detection was 0.1 µg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.


Assuntos
Impressão Molecular , Oxitetraciclina , Oxitetraciclina/análise , Boro , Impressão Molecular/métodos , Carbono , Corantes Fluorescentes , Reprodutibilidade dos Testes , Polímeros , Antibacterianos , Extração em Fase Sólida/métodos , Chá , Fenômenos Magnéticos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...